skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blanks, Tamar Lichter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cheon, Jung Hee; Tillich, Jean-Pierre (Ed.)
    Lattice-based cryptography relies on generating random bases which are difficult to fully reduce. Given a lattice basis (such as the private basis for a cryptosystem), all other bases are related by multiplication by matrices in GL(n,Z). We compare the strengths of various methods to sample random elements of GL(n,Z), finding some are stronger than others with respect to the problem of recognizing rotations of the Zn lattice. In particular, the standard algorithm of multiplying unipotent generators together (as implemented in Magma’s RandomSLnZ command) generates instances of this last problem which can be efficiently broken, even in dimensions nearing 1,500. Likewise, we find that the random basis generation method in one of the NIST Post-Quantum Cryptography competition submissions (DRS) generates instances which can be efficiently broken, even at its 256-bit security settings. Other random basis generation algorithms (some older, some newer) are described which appear to be much stronger. 
    more » « less